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Abstract. A model for ferroelectric relaxors such as PMN, PSN and PLZT giving a quantitative
description of their properties and phase diagrams is proposed within the framework of the
random field theory. In this model, the relaxors are considered as systems with random sites
and orientations of electric dipoles, lattice vacancies, antisite ions and other defects as well as
impurities embedded into the paraelectric phase, which is proposed to be the ‘host’ lattice for
these materials.

The calculations of the temperatureTc which corresponds to the transition from the
paraelectric to the ferroelectric phase is carried out as a function of the concentration of
lattice defects (point charges and dilatational centres). On the basis of these calculations, the
peculiarities of the ferroelectric relaxor phase diagram are discussed. The main features of the
phase transition sequence when decreasing the temperature in relaxors with constant dipole and
defect concentrations are described.

The Cross superparaelectric model and Burns temperatureTd have been shown to appear
in a natural way in the proposed model.

A comparison between calculated and experimental data has been made for the model
ferroelectric relaxor PLZTx/65/35. Fairly good agreements between calculated and measured
Tc(x) and critical concentrations of lanthanum have been obtained from the model.

1. Introduction

Relaxor ferroelectrics are numerous. They belong to the family of disordered materials
and most particularly to the group of mixed-cation ferroelectrics of perovskite structure
with general chemical formula A1−xA′

xB1−yB′
yO3. The most intensively studied

relaxors are PbMg1/3Nb2/3O3 (PMN), PbSc1/2Ta1/203 (PST), PbSc1/2Nb1/2O3 (PSN) and
Pb1−xLaxZr1−yTiyO3 (PLZT x/1 − y/y). The relaxors PMN and PST, PSN are
representatives of the 1:2 and 1:1 groups respectively. The relaxor properties of 1:2 systems
were shown to be independent of technology; meanwhile it appeared possible to prepare
1:1 compounds with any level of order and disorder, i.e. with any mixture of the materials
with conventional ferroelectric and relaxor properties depending on technological conditions
(see [1, 2] and references therein).

At first glance PLZTx/1 − y/y seems to be more complex due to disorder both on A
and B cation sublattices. However, the existence of PLZT materials with any content of
Ti and Zr (0 < y < 1) for manyx values makes it possible to investigate systems with
different levels of order which seems to be important for clearing up the nature of disordered
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systems and their property anomalies. So far, PLZT has been shown to be a relaxor for
severalx andy values of a given temperature region. As judged from the published phase
diagram [3] and different property measurements [4] the compositionsx/65/35 begin to
exhibit significant relaxor character only forx & 5. This 65/35 series with rhombohedral
symmetry of the ferroelectric phase atx = 0 has been extensively studied [5–8]. The series
with tetragonal symmetry of the ferroelectric phase forx = 0 has been shown to behave
like a relaxor only abovex = 12 (see [9] and references therein).

The most important feature of relaxors is known to be dielectric permittivity dispersion,
which cannot be described using a conventional Debye relaxation with only one relaxation
time. The existence of long-time (up to infinity) relaxation modes seems to be the peculiar
feature of any relaxor. As a result, many anomalies of relaxor material properties can
be observed in these systems. For instance, in contrast to ordinary ferroelectrics many
properties show a maximum within a broad temperature region located aroundT = Tm,
whereTm corresponds to the maximum in the real part of the dielectric permittivity, i.e. the
transition is referred to as ‘diffused’. Due to the property anomalies, relaxor materials find
a variety of applications as ceramics, particularly as electrostrictive actuators and capacitor
dielectrics [10].

In spite of the great effort which has been applied to the understanding of the origin
and mechanisms of the relaxor property anomalies, this problem has not been cleared up to
date.

Firstly Smolenskii and coworkers [11] proposed that the origin of the phase transition
diffuseness in PMN could be related to chemical heterogeneities which result in a smearing
of local Curie temperatures. Some years later, Burns and Dacol [12] showed that only
short-range order polar clusters would be present, i.e. the system could be considered as
a dipole glass rather than a ferroelectric with a distribution of local regions with long-
range order. Nowadays a large number of experimental data speak in favour of a dipole
glass state in relaxors (see e.g. [1], [6], [13] and [14]). However some measurements were
discussed in the framework of long-range ferroelectric order (see e.g. [15]). In our opinion,
this discrepancy is related to the lack of any quantitative description of the phenomena in
relaxors, which makes it difficult to pour light on the origin and driving forces of dipole glass
or ferroelectric phase appearance. More likely chemical heterogeneities, random sites and
orientation of electric dipoles, unavoidable lattice defects such as vacancies of lead, oxygen
and antisite ions etc as the sources of random electric field distribution in any disordered
ferroelectric play a crucial role in the phase diagram and the particular properties of these
materials [16–19].

In the present work we propose for the first time a model of relaxor ferroelectrics based
upon the random field theory. A comparison between calculated and experimental data will
be performed for PLZTx/65/35 relaxor ferroelectrics.

2. The model

It is well known that many properties of ordinary ferroelectrics can be explained within
the framework of the mean-field approximation. In this approach, any ion of the lattice
‘feels’ the same average field induced by other lattice ions. Due to this, atT < Tc,
where Tc is the ferroelectric phase transition temperature, ions are shifted in the same
way, giving rise to macroscopically large regions called domains, the size of which is
mainly fixed by electrostatic energy considerations. In contrast to this description, in
disordered ferroelectrics with random sites and orientations electric dipoles, lattice defects
and unavoidable impurities, a distribution of random fields has to be introduced, i.e.
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different ions ‘feel’ different random electric fields induced by other lattice ions, defects
and impurities. It is clear that the physical properties of such a system have to be calculated
in this case using this distribution function, and more particularly its maximum position
and width, being defined by averageE0 and mean squared electric field1E respectively.
The indirect interaction between random site electric dipoles through the soft mode of the
‘host’ lattice has been shown [20] to be the source of constant-sign electric field, i.e. non-
zero average field which tends to order the system. This field is defined by the dipole
subsystem characteristics (concentrations, dipole moment values and orientations) as well
as the ‘host’ lattice parameters (dielectric permittivity and correlation radius). Direct dipole–
dipole interactions, point charges, dilatational centres etc are known to be the sources of
alternating-sign electric fields and contribute to the distribution functions width [16, 19].
It is clear that the average field has to be larger than its dispersion (i.e.E0 � 1E) for
long-range order appearance with a non-zero order parameterP , whereP is the average
polarization. In the opposite case, i.e.E0 � 1E or E0 6 1E, a dipole glass or mixed
ferroglass phase with coexistence of long- and short-range orders can appear.

These suppositions were confirmed by the calculations of phase diagram characteristics
of model disordered systems such as K1−xLi xTaO3 with the help of the random field
distribution function [16–19, 21] i.e. in the random field theory framework. In KTL as
well as in KTN (KTa1−xNbxO3) and KTNa (K1−xNaxTaO3), Li, Nb and Na ions are known
to be off-centre ions, i.e. random electric dipoles in the incipient ferroelectric KTaO3 host
lattice [22, 23]. Vacancies of oxygen, potassium and unavoidable impurities were supposed
to be the additional sources of random electric fields.

To find out whether a similar random field theory approach can be applied to the
calculations of relaxor ferroelectric properties, one has to know whether they can be
considered as systems of electric dipoles and other random electric field sources. The
question arises of what material should be considered as the host lattice.

Let us begin with PLZTx/1−y/y relaxor ferroelectric. We suppose that PbZr1−yTiyO3

(PZT) paraelectric phase can be considered as the host lattice for PLZT. It is well known that
a conventional ferroelectric transition occurs in PZT on cooling, the temperature of which
depends on they value. In this phase all PZT cations are shifted from their equilibrium
position in the paraelectric phase, i.e. all of them can be considered as electric dipoles
embedded in the paraelectric phase. It was shown recently through NMR measurements
[24] that in both PZT and PLZT the values of the ionic displacements are distributed in a
wide region around average shifts. In our opinion this phenomenon is the consequence of
the random substitution of Zr for Ti and vice versa for anyy value, which corresponds only
to an average titanium concentration. Keeping in mind that the relative concentration of the
configurations withk ions of Ti as nearest neighbours of any Zr or Ti ion can be written as

P k
6 = [6!/k!(6 − k)!]yk(1 − y)6−k k = 1, . . . , 6 (1)

one can see that the probabilities of having configurations withk = 1, 2, 3 are close to
one another; meanwhile the probability of havingk = 6 or 0 is much smaller than the
most probable valuePm (e.g. for y = 0.35, Pm = 0.328, which corresponds tok = 2).
The distribution of ions around any cation and lattice defects may result in ay-dependent
random distribution of both values and directions of the cation displacements in contrast to
what happens for the end members of the PZT diagram, PbTiO3 and PbZrO3, for which
the same values of the displacements of all Ti or Zr and Pb ions along [100] or [111] and
[110] type directions respectively take place. The peculiarities of the PZT phase diagram
[25] seem to speak in favour of random sites and orientations of the electric dipoles in
PZT. Though it is cumbersome to estimate the parameters of the dipole distribution, the



6988 M D Glinchuk and R Farhi

existence of an ordinary (i.e. without dielectric dispersion) ferroelectric phase transition in
PZT gives evidence that the average electric field is larger than its dispersion. The La ions in
PZT induce random electric fields which tend to destroy the PZT long-range order. PLZT
can thus be considered as a system constituted of electric dipoles, La ions and different
defects embedded in the PZT paraelectric phase. Among these defects should be mentioned
vacancies of Pb, Zr and Ti as well as dipole pairs La3+(Pb2+)–La3+(Zr4+ or Ti4+), the
concentration of all these defects being dependent upon La concentration (the notation
An+(Bp+) represents an An+ ion substituted for a Bp+ ion). The essential influence of La
ions on the PLZT conductivity up to the changing of p-type into n-type at 6–8% La in
PLZT x/52/48 [27] speaks in favour of the La influence on other defects. The existence of
Ti3+ ions and of La3+(Pb2+)–Ti3+(Ti4+) dipoles can also be supposed at least in illuminated
samples [28, 29].

The relaxors belonging to the 1:1 group (e.g. PSN and PST) may have an ordinary
ferroelectric phase transition dependent on the sample preparation technology. Assuming
that in all samples the paraelectric phase is the same, we propose to consider it as the host
lattice in the random field model of the 1:1 group of relaxors. Unfortunately nothing is
known about a ferroelectric–paraelectric phase transition in any material of the 1:2 group of
relaxors (see however section 4 in this paper). We can only assume that in PMN it might be
somewhere near 900 or 600 K where Pb or Nb ion displacements appear respectively [1].
In PMN all the ions, including oxygen, are shifted from their equilibrium positions in the
ideal perovskite structure, i.e. they are electric dipoles in the host lattice. Their orientations
are shown to be one of the following: [111] for Nb and Mg, [110] for Pb and [100] for
O [1, 26]. NMR measurements [26] gave evidence that the values of Nb and Pb dipole
moments were also distributed.

The main defects of other types in these materials are vacancies of Pb and O and antisite
ions (e.g. Nb substituted for Mg and vice versa). Since local polarization in PMN is along
[111] it has to be induced by Nb(Mg) ions [14]. Under these conditions lead and oxygen
dipoles may be considered as defects which tend to destroy [111] type polarization and to
order the system in their own directions [17].

3. Order parameter and transition temperature in the random field theory

The ferroelectric phase transition order parameter in the random field theory can be
represented as [16]

L =
∫ ∞

−∞
〈l〉f(E, L) dE. (2)

Here L = 〈〈d∗〉〉/d∗ is a dimensionless order parameter which characterizes the
number of coherently oriented dipoles (the bar denotes averaging over spatial disorder and
brackets signify both quantum statistical averaging over possible dipole orientations and
self-consistent averaging over random electric fields).d∗ = dγ (ε0 − 1)/3 is the effective
dipole moment,γ is the Lorentz factor,ε0 is the host lattice static permittivity and〈l〉
is the quantum statistical average of the dimensionless single dipole momentl = d∗/d∗.
The distribution functionf(E, L) has been calculated in the statistical theory framework
by averaging over spatial configurations of random field sources [30] as well as thermal
averaging both over orientations and the random field distribution function so that it is
expressed through itself in a self-consistent manner. The ferroelectric phase transition
order parameter has to arise atT = Tc (second-order phase transition) or at a critical
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concentration of defects at zero temperature. The transition temperature can thus be obtained
from expression (2) at the limit whereL → 0.

In the simplest model with two possible orientations of the vectorl (lz = ±1,
lx = ly = 0), its thermal average value〈l〉 = tanh(E/kT ) and the distribution function
f (E, L) = f (E − E0L) whereL ≡ Lz, E ≡ Ez and E0 is the most probable random
electric field value. Therefore expression (2) can be rewritten in the form

L =
∫ ∞

−∞
tanh(E/kT )f (E − E0L) dE. (3)

Expanding the result nearT = Tc in the small parameterL up to the first non-vanishing
term we obtain the equation forTc:

Tc/Tcmf =
∫ ∞

−∞
f (x)/ cosh2(x/kTc) dx (4)

whereTcmf = E0 is the phase transition temperature in the mean field approximation. It
should be noted that the obtained equations are valid also for dipoles with eight possible
orientations, e.g. of the [111] type, if a factor

√
3 is entered into expression (4) (see for

instance [21]).
The form of the distribution functionf (x) is strongly dependent on the form of the

electric fields (created by the other dipoles, lattice defects and impurities) which act on
the considered dipole. We have calculated it in the framework of the statistical theory of
first order allowing for a linear electric field contribution. For independent sources of the
random fields the calculations similar to those in [16] yield

f (x) = 1

(2π)3
)

∫ ∞

−∞
exp

(
iE · t −

k∑
m

Fm(t)

)
dt (5)

Fm(t) = nm

∫
〈〈exp(−itEm(r)) − 1〉〉 d3r. (6)

Herenm andEm(r) are respectively the concentration and electric field ofmth type defects.
Since angular brackets in (6) include the averaging over possible dipole orientation it is
essential whenEm(r) is the field of electric dipoles. In the crystals with soft modes it has
the form [22]

Eα(r) = −
∑

β

d∗2

ε0
[f1(r)δαβ + (3qαqβ − δαβ)f2(r)]l

β (7)

f1(r) = 2
3(exp(−r/rc)/rr2

c ) + 4π/3V q = r/r

f2(r) = (1/r3)[1 − exp(−r/rc)(1 + r/rc + r2/3r2
c )]

(8)

whererc andV are the host lattice correlation radius and volume respectively,α, β = x, y, z.
The complex form of field (7) allows us to make an analytical calculation of the distribution
function in the two limiting casesnr3

c � 1 (Lorentzian limit) andnr3
C � 1 (Gaussian limit)

wheren is the dipole concentration. Since atnr3
c � 1 the ferroelectric phase transition

induced by electric dipoles in the host lattice without defects of other types is firmly realized
we shall consider the case of the Gaussian distribution function form when ReF1(t) ∼ t2,
ImF1(t) = E0Lt . Note that the Gaussian limit seems to be valid for relaxor ferroelectrics.
e.g. PLZTx/65/35, in which atx = 0 a ferroelectric phase transition occurs. Keeping in
mind La3+ in PLZT, let us assume that additional defects in the lattice are point charges
and dilatational centres, their fields being respectively

Eα
1 = (Ze/ε0)qα/r2 (9)
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Eα
2 =

∑
αβ

pαβγ Uβγ (r) (10)

Uβγ = (�0/12π)[(1 + ν)/(1 − ν)]l/r3(δαβ − 3qαqβ)

whereZe and�0 are the point defect charge and elastic moment, andpαβγ andν are the
host lattice piezoelectric tensor component and Poisson coefficient respectively.

Substitution of (9) or (10) into (6) and integration leads toF2(t) ∼ |t |3/2 or F3(t) ∼ |t |
[30], i.e. a Holtzmarkian or Lorenzian form of distribution function for point charges or
dilatational centres respectively. As a result the distribution function can be represented in
the following form:

f (E − E0L) = 1

2π

∫ ∞

−∞
exp[it (E − E0L) − A|t |3/2 − B|t | − Ct2] dt (11)

Here E ≡ Ez, L ≡ Lz, E0 = 4πnd∗/ε0, A = 32
15((π/2)Ze/ε0)

3/2n1, B = (�0/9)[(1 +
ν)/(1 − ν)]pn2 and C = (16π/15)nr3

c (d∗/ε0r
3
c )2 wheren1 and n2 are the concentrations

of point charges and dilatational centres respectively. In order to take into account all the
defects already mentioned in section 2 we have to considerA, B andC in expression (11)
as the global parametersB = ∑

k Bk, C = ∑
k Ck and A = ∑

k Ak wherek enumerates
the sources of the same type,Bk, Ck andAk being proportional to the concentration of the
kth type of defect. Because of the lack of information about these concentrations we shall
consider one type of electric dipole, point charge or dilation centre. Substituting (11) into
(3) and (4) and integrating overx we find the explicit form forTc

1/kTc = E0

∫ ∞

0

exp(−Ct2 − At3/2 − Bt) dt

sinh((π/2)kTct)
. (12)

We have to underline that transition temperatureTc at which the long-range order parameter
L appears was calculated in the random local field theory framework [21], which is more
general than the mean-field approximation. In the latter approximationkTcmf = E0, i.e. to
the most probable random field value.

The results of the numerical calculation of the integral (12) are reported in figures 1
and 2 for point charges (B = 0) or dilatational centres (A = 0) respectively. At
any constant concentration of electric dipoles dimensionless parametersµ = A/C3/4 =
(4

√
π/15)(Zeλ/d∗n)3/2n1 and1 = B/C1/2 = (�0/36

√
π)P [(1+ ν)/(1− ν)](ε0λ/d∗n)n2

are proportional to the concentration of point chargesn1 and dilatational centresn2

respectively. The parameterλ = √
15nr3

c is the measure of thenr3
c value. It is seen

from figures 1 and 2 that increasing defects concentration decreases theTc/Tcmf ratio more
strongly than decreasingnr3

c (compare this ratio forµ = 1 = 0 with the values for points
µ 6= 0, 1 6= 0). Note thatL increases smoothly with increasingλ and atTc = Tcmf all
the dipoles have to be coherently oriented (L = 1) [18], i.e. Tc/Tcmf can be considered
as the measure of the coherently oriented dipoles. The decrease in this ratio with1 or µ

increasing is larger for smallnr3
c values, and dilatational centres influence it more strongly

than point charges do (compare figures 1 and 2). Theµ = µc or 1 = 1c values at which
Tc = 0, corresponding to critical concentrations of point chargesn1c or dilatational centres
n2c are reported in figure 3. At critical concentration of defects (e.g. La3+ in PLZT) the
ferroelectric phase transition with long-range order is completely destroyed (Tc = 0, L = 0).
At n1 > n1c or n2 > n2c a dipole glass state appears. We have to underline that for dipole
glass property description we have to consider dynamic order parameterL(ω), which can
be obtained from expression (2) allowing for a Debye-like single dipolel relaxation with
barriers depending upon random electric fields. This approach makes it possible to describe
ε(ω) behaviour without introducing any relaxation time distribution function [18]. However
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Figure 1. The dependence of the ratioTc/Tcmf on point charge dimensionless concentration
µ = an1 for differentλ = √

15nr3
c values (λ−1 numerates the curves from the right- to the left-

hand side).• and◦ are experimental data for PLZTx/65/35 from [5] and [32] respectively.

Figure 2. The dependence of the ratioTc/Tcmf on dilatational centre dimensionless
concentration1 = bn2 for different λ = √

15nr3
c values (λ−1 numerates the curves from

the right- to the left-hand side.)• and◦ are experimental data for PLZTx/65/35 from [5]
and [32] respectively.

we shall restrict the discussion in this paper to the consideration of relaxor phase diagram
peculiarities and their static properties only.
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Figure 3. Dependence of dimensionless critical concentrations of point chargesµc and dilatation
centres1c on the parameterλ−1 = (15nr3

c )−1/2.

It follows from figure 3 thatn1c and n2c increase for increasingnr3
c and at the limit

λ−1 → 0, (nr3
c → ∞) we haveµ, 1 → ∞ so that the ordinary ferroelectric phase

transition which appears in the mean-field approximation may be destroyed only by large
defect concentrations. Note that thenr3

c value depends both on electric dipole concentration
and temperature because of the correlation radius temperature dependence.

4. Discussion

Let us begin with the comparison of calculated and experimental data. The conditions of the
performed calculations are very close to the PLZTx/1−y/y relaxor. In agreement with the
proposed model (see section 2) the transition temperature in the mean-field approximation
Tcmf has to be the transition temperature from the paraelectric to the ferroelectic phase of the
pure PZT system, which has been referred to asTd (the Burns temperature) [31], and depends
on they value. Since the PLZTx/65/35 series is the most studied one, we have reported
in figures 1 and 2 the experimentalTc/Tcmf ratios for two different series of samples with
lanthanum compositions between 0 and 10% [5, 32] whereTc was measured as dielectric
susceptibility maximum position. To transformµ and 1 values intox values we fitted
the calculated and experimental ratio for one composition and obtained the proportionality
relationsµ = 1.05x, 1 = 1.05x wherex is a percentage. The constantλ curves of these
figures fit the experimental results rather well, despite the scattering of the data of [5] and
[32], which is probably related to differences in the sample preparation. It should be noticed
moreover that for La concentrations larger than about 6% in 65/35 ceramics, the temperature
at which dielectric susceptibility is maximum acquires a dynamic character which forbids
any use as a static transition temperatureTc. This could explain why the curves do not fit the
experimental data so nicely forx > 6. Critical concentrations of point charges or dilatational
centres can be obtained by using theλ values which fit the observed data. It can be seen
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from figure 3 that the corresponding critical concentrations of lanthanum are 9.5–10.5% from
data from both [5] and [32]. Note that the existence of other defects in the lattice would
contribute to a decrease of these numbers. Since e.g. in PLZT 8/65/35 the concentrations
of Pb and Ti or Zr vacancies are about 3–4% [33], they may decrease the obtained value
of the lanthanum critical concentration by a value proportional to their concentration. The
obtained critcal concentration is thus in good agreement with the observed one (xx ≈ 6).
Therefore the calculations in the framework of the random field theory lead to a correct
description of theTc concentration dependence with only one adjustable parameter. It should
be noticed that in ferromagnetic disordered systems with non-magnetic impurities (which
seem to be the magnetic analogue to PLZT) the observed transition temperature shows an
exponential decrease with non-magnetc impurity concentration increase [34] in contrast to
the essentially different observed in PLZT. This could be explained by the fact that non-
magnetic ions do not introduce any random magnetic field but only disturb the magnetic
dipole–dipole interaction.

In agreement with the proposed model,rc is the correlation radius of the host lattice. For
PLZT this host lattice has been suggested to be pure PZT paraelectric phase. AtT 6 Td ,
the variation ofrc can be estimated fromrc ≈ √

ε0. Sinceε0(T ) and thusrc are large
at T ≈ Td , local ferroelectric regions (remanent from the PZT ferroelectric phase) have
to exist even at defect concentrations larger than the critical ones. Actually,nr3

c may be
a maximum near the Burns temperature and atnr3

c � 1 defects are unable to destroy the
ferroelectric ordering (see figure 3). The existence of such ferroelectric regions in 8–9/65/35
has been shown from x-ray [35], Raman scattering [7, 8] and refractive index measurements
[31]. Notice that atn1,2 < n1c,2c the size of these ferroelectric regions may be larger so at
n1,2 → 0 they transform into pure PZT ferroelectric domains. To our mind the existence of
ferroelectric regions atT 6 Td at any concentration of La3+ seems to be the main reason
for the sharp break of the optical index of refraction in PLZTx/65/35 atT = Td for anyx

[31]. The assumption that this phenomenon speaks in favour of pure PZT region existence
in PLZT for any concentration of lanthanum [31] contradicts the NMR and ESR data [24].
In accordance with ESR measurements, PZT local regions exist atx 6 4% only. Since
the measurements of the refractive index in PMN and PZN exhibit an effect similar to
those observed in PLZT withTd several hundred degrees aboveTc (see [31] and references
therein), the same model has to be valid for these materials and very likely to other relaxor
ferroelectrics. Note thatTd measurements in the relaxors of the 1:2 family may pour light
on the unobservable paraelectric–ferroelectric phase transition in these relaxors.

Figures 1–3 can be considered as relaxor ferroelectric phase diagrams. It is seen that at
largenr3

c values (nr3
c � 1), Tc/Tcmf is close to unity for a wide enough concentration range

of defects, e.g. 0.8 6 Tc/Tcmf 6 1 when 06 µ 6 4.5 or 0 6 1 6 4, for PLZT x/65/35
theseµ and1 values being close to the defect concentrations as percentages. Since atTc

nearTcmf a large fraction of the dipoles has to be coherently oriented, the order parameterL

can be close to unity, i.e. the ferroelectric phase transition is realized. Whennr3
c decreases,

even small concentrations of defects decreaseTc/Tcmf strongly. For instance fornr3
c = 0.74

and1 = 2, Tc/Tcmf = 0.5 (see figure 2). Under these conditions,L < 1 and only a fraction
of the dipoles is coherently oriented. The other fraction is gathered in short-range order
clusters of typical sizerc. We have thus a system which can be described as a mixed
ferroglass state. On further decreasing ofnr3

c (nr3
c � 1), Tc/Tcmf → 0 even at small defect

concentrations, i.e.L → 0, and we are faced with the dipole glass picture in which only
short-range order clusters exist. The same dipole glass state has to be at defect concentrations
larger than critical, which strongly depend on thenr3

c value (see figure 3). Since, for all
the relaxors, concentrations of dipoles, lattice defects and impurities are constant,nr3

c has



6994 M D Glinchuk and R Farhi

to change with temperature, i.e. the critical concentration of defects as well as the phase
transition picture may change. Let us consider the possible sequence of phase transitions
in the relaxors on cooling, at any constant concentration of defects, e.g.n1,2 > n1c,2c.

As discussed above, in the high-temperature region close to the Burns temperatureTd

where the correlation radius is large (nr3
c � 1, L ≈ 1), ferroelectric regions with sizes

depending on the defect concentration are present.
When nr3

c ≈ 1, a mixed ferroglass phase may appear. In this phase infinite clusters
coexist with short-range order clusters. As a result, this state is characterized by a long-range
order parameterL 6= 0 but smaller than unity (only a fraction of the dipoles are coherently
oriented) together with long relaxation times which are evidenced through dynamic dielectric
susceptibility dispersion. Some hints of ferroglass phase existence has been obtained in 1:1
relaxors [2].

In the intermediate temperature rangeTc < T < Td where the host lattice correlation
radius is small enough thatnr3

c < 1, short-range clusters may appear. The size of these
clusters is determined by therc value, i.e. it is temperature dependent. Ifnr3

c � 1, it
becomes possible to neglect the interactions between dipoles and we are faced with the
picture of random site and orientation effective dipolesd∗ = γ (ε0−1)d/3 with a temperature
dependent value determined by the static dielectric susceptibility of the host latticeε0. This
valued∗ may be even two orders of magnitude larger than the real dipole momentd, e.g.
about 30–50e A. Because of the small values ofrc or d∗, in the high enough temperature
region considered the clusters or effective dipoles may have large reorientational velocity,
which is expected to decrease on decreasing the temperature. In this temperature region,
L = 0 and

√
L2 = 0. This picture of small movable clusters corresponds quite well to the

Cross superparaelectric phase model [36].
At T < Tc some of the clusters or effective dipoles may freeze; the complete freezing

of all of them appears atT = Tg whereTg is the transition temperature to the dipole glass
state (L = 0,

√
L2 6= 0, L(ω) 6= 0; long-time relaxation modes up to infinity determine

the system dynamic properties). This dipole state has to exist at temperatures belowTg

and higher than zero provided thatn1,2 > n1c,2c. The Tg value can be estimated from the
random field distribution function width1E ≈ Tg. In the case of dilatational centres, the
distribution function is a convolution of Gaussian and Lorentzian functions (see equation (5))
i.e. 1E = C1/2( 1

21 + (1 + 1
412)1/2). Since1 > 1c (1c ≈ 10 for PLZT 65/35) we obtain

1E > 10
√

C. DefiningT 0
g = √

C as the dipole glass transition of the system without any
dilatational centre, we can see that the defects increaseTg very strongly. Keeping in mind
that in diluted systems such as KTNT 0

g ∼ 3 K [37] we can expect relaxors with larger
concentrations of dipoles to haveT 0

g values around 20 K, which givesTg = 200 K for
PLZT. This is very close to the observed value [6, 8]. For a more accurateTg estimation we
should know additional parameters determining the

√
C value (see section 3). The dipole

glass is also expected to occur in other relaxor systems of 1:2 type such as PMN because
of their previously discussed large number of defects (see section 2). The glass state in
PMN has been confirmed by many experimental data [1]. The dynamic properties of dipole
glassesL(ω) and ε(ω) can be calculated also within the frame of the model proposed in
this paper.

5. Conclusion

We have proposed in this paper a model which allows us to describe the physical properties
and phase diagram peculiarities of the relaxor ferroelectrics within the framework of a
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random field theory. The Cross superparaelectric state as well as the Burns temperatureTd

naturally appear in our model. The calculations based on the statistical theory of first order
involving the linear random field contribution permitted us to give a fair explanation of the
Tc dependence on La concentration inx/65/35 PLZT as well as the value of La concentration
at which the dipole glass state appears belowTg. The preliminary calculations have shown
that non-linear random electric field contributions to the distribution function and to the
order parameter in relaxors with a centrosymmetric paraelectric phase have to be involved
only through their odd powers due to symmetry considerations, i.e. the first non-linear term
is proportional toE3. Its contribution can be supposed to be rather small in some cases. The
exact calculation of these non-linear term contributions both to the random field distribution
function and to the system order parameter is in progress.

References

[1] Bonneau P, Garnier P, Calvarin G, Husson E, Gavarri J R, Hewat A W and Morell A 1991J. Solid State
Chem.91 350–61

de Mathan N, Husson E, Gaucher P and Morell A 1990Mater. Res. Bull.25 427–34
Bonneau P, Garnier P, Husson E and Morell A 1989Mater. Res. Bull.24 201–6

[2] Kamzina L S, Korgenevskii A L, Krainik N N and Sapognikova L M 1990 Izv. Akad. Nauk.54 614–620
Kamzina L S, Krainik N N and Sher E S 1988Ferroelectrics54 89–94

[3] Meitzler A and Bryan H O 1973Proc. IEEE61 959
[4] Viehland D, Jang S J, Cross L E and Wutting M 1991J. Appl. Phys.69 6595–602
[5] Rosetti G A, Nishimura T Jr and Cross L E 1991J. Appl. Phys.70 1630–7
[6] Vichland D, Li J E, Jang S J, Cross L E and Wutting M 1992Phys. Rev.B 46 8013–7
[7] Dellis J L, Dallennes J, Carpentier J L, Morell A and Farhi R 1994J. Phys.: Condens. Matter6 5161–8
[8] Farhi R, Marssi M E, Delis J L and Picot J C 1995Ferroelectricsat press
[9] Dai Xunhu, Di Giovanni A, Viehland D 1993J. Appl. Phys.74 3399–405

[10] Yushin N K, Smirnova E P, Sotnikov A V, Tarakanov E A and Maksimov A Yu 1993Izv. Akad. Nauk.57
2634–9

[11] Smolenskii G and Agranovskaya A 1960Sov. Phys.–Solid State1 1429
[12] Burns G and Dacol F H 1983Phys. Rev.B 28 2527
[13] de Mathan N, Husson E, Calvarin G, Gavarri J R, Hewat A W and Morell A 1991J. Phys.: Condens. Matter

3 8159–71
[14] Laguta V V, Glinuchuk M D and Bykov I P 1994Ferroelectrics156 273–8
[15] Westpal V, Kleemann W and Glinchuk M D 1992 Phys. Rev. Lett.68 847
[16] Glinchuk M D and Stephanovich V A 1994 J. Phys.: Condens. Matter9 6317–27
[17] Glinchuk M D 1995 J. Phys.: Condens. Matter7 6939–50
[18] Glinchuk M D and Stephanovich V A 1995 Ferroelectrics169 281–91
[19] Glinchuk M D and Kondakova I V 1995Solid State Commun.96 529–34
[20] Vugmeister B E and Glinchuk M D 1980 Zh. Eksp. Teor. Fiz.79 947–52
[21] Vugmeister B E and Stephanovich V A 1990 Zh. Eksp. Teor. Fiz.97 1867–81
[22] Vugmeister B E and Glinchuk M D 1990 Rev. Mod. Phys.82 993–1026
[23] Hochly U T, Knorr K and Loide A 1990Adv. Phys.39 405
[24] Bykov I P, Glinchuk M D, Laguta V V, Maximenko Y L, Jastrabik L, Trepakov V A, Dimza V and Hrabovski

M 1995 J. Phys. Chem. Solids56 919–23
[25] Haun M J, Furman E, Jany S J and Cross L E 1989Ferroelectrics99 13–25
[26] Glinchuk MD, Bykov I P and Laguta V V 1993Ferroelectrics143 39–47
[27] Wojcik R, Blaszczak J and Handerek J 1986Ferroelectrics70 39–46
[28] Warren W L, Seager C H, Dimos D and Friebell F J 1992Appl. Phys. Lett.61 2530–2
[29] Trepakov V A, Dimza V, Jastrabik L, Savinov A and Bryknar Z 1994Phys. Status Solidib 183 299–307
[30] Stoneham A M 1969 Rev. Mod. Phys.41 82–170
[31] Burns G and Dacol F H 1990Ferroelectrics104 25–36
[32] Dai Xunhu, Xu Z, Li Jie-Fang and Viehland D 1995J. Appl. Phys.77 3254–60

Li Jie-Fang, Dai Xunhu, Chow A and Viehland D 1995J. Mater. Res.10 926–38
[33] Krumin A E 1984Phase Transitions and Related Phenomena in the Ferroelectics(Riga: Zinatne) (in Russian)
[34] Korenblit I Ya and Shender E F 1978Usp. Fiz. Nauk.126 233–268



6996 M D Glinchuk and R Farhi

[35] Darlington C N 1988J. Phys. C: Solid State Phys.21 3851–61
Darlington C N 1989Phys. Status Solidia 113 63–9

[36] Cross L E 1987Ferroelectrics76 241–53
[37] Lyons K B, Fleury P A and Rytz D 1986Phys. Rev. Lett.57 2207–10


